General Game Playing with a Portfolio Agent using Machine
Learning and GGP add-ons

Simona Vychitilova, Aaron Schapira, Ismail Giindiiz, Elliot Doe, Meike Thijsen
Department of Advanced Computing Sciences
Maastricht University
Maastricht, The Netherlands

January 2023

Abstract

General Game Playing requires an agent to play all
types of games optimally. In the Kilothon competi-
tion, an agent has to play over a thousand games,
each with only one minute of thinking time. For
this purpose, a portfolio agent is created, picking the
best agent per game. Which agent should be selected
for which game is determined by a machine learning
model. This model was trained on a subset of the
games as training on all games is not feasible. This
subset was created by clustering games on their con-
cepts and selecting representative samples from each
cluster. After training this model, the portfolio agent
achieves an average utility of 0.161 on all games in
the Kilothon competition. In addition to this, gen-
eral game playing features are added: a uniform time
distribution and picking heuristics based on the game
ending increase the utility further up to 0.2195, there-
fore beating all previous Kilothon participants.

1 Introduction

1.1 Background

General Game Playing (GGP) is a subsection of Al
which aims to develop agents that can play all types
of games. An agent is required to be able to play any
arbitrary game based only on the game description.
This means that the agent has to decide which heuris-

tics to use in real time and cannot rely on features
like opening books or set evaluation features.

Many algorithms have been developed for game
playing each with varying performance for differ-
ent games. Adversarial search is a technique where
agents compete with conflicting goals. This is a very
large sub field of AI and a lot of research has been
done to develop algorithms that optimise game play.

Ludii [11] [14] is a digital general game system.
It was developed by the Digital Ludeme Program
(DLP) [4] team at Maastricht University to model,
play and evaluate games. This project aims to im-
prove our understanding of traditional games using
modern Al techniques. Games in the system can
range from card to board or even puzzles. All games
are turn based but have a varying number of players
and can sometimes also include stochastic elements.

The Ludii AT Competition [12] has been held by
the Ludii team every year since 2020. The Kilothon
is one of three possible tracks that involves partici-
pants testing a single agent against the inbuilt UCT
agent for 1119 different games that satisfy the Kilo-
thon conditions in the Ludii database. For each game
it is given a utility between -1 and 1 based on its per-
formance. At the end of the run the average utility
is given as the score of the agent. In 2022 Cyprien
Michel-Deletie [5] won the Kilothon. The goal of
this project was to build an agent that would then
be entered into this competition. The agent is lim-
ited to one minute of thinking time per game. Af-

ter the thinking time is used up, the agent will be
forced to play randomly until the end of the game.
Additionally, after each player has played 500 turns
the game concludes in a draw. This is slightly dif-
ferent to GGP as the list of games is predetermined
and therefore preprocessing steps can be applied. All
these games in Ludii also have a fixed concepts that
can be accessed during play.

1.2 Approach

Since playing these 1119 games takes very long, the
project aimed to create a subset that is representa-
tive of the entire game set. This subset could then be
used in order to conduct experiments much quicker,
but would still give meaningful results. Subsets like
this have been created using various clustering tech-
niques. Each subset was then validated to evaluate
how the score of the subset represents the true score
of the Kilothon. Based on these scores a single sub-
set has been selected that could be used for testing
purposes. The subset was also be validated by doing
explainability to find which features are most impor-
tant and seeing if these line up with what is expected.
Experiments were then done on the subset in order to
determine which agents perform best on each game.
From these results a classification model was created
that could predict which agent is best for each game
based on its concepts. This resulted in a final agent
called a portfolio agent, which contains a list of pre-
established agents that can be deployed to play cer-
tain games based on the classification model.

Enhancements were also be added to the agents
so that the agent will perform optimally in the Kilo-
thon. This included generating an automatic eval-
uation function based on the given information of a
game. The given algorithms were then able to eval-
uate states with more precision. Additionally, an al-
gorithm was created to better distribute the allotted
thinking time. The goal was to decrease how often
the agent would be forced to play randomly.

1.3 Research Questions

1. Can games be clustered based on their concepts
in a way that a valid subset can be created of

the games in the Kilothon, and is an agents per-
formance on this subset representative of how it
would perform on the entire Kilothon?

2. Can an effective algorithm be developed to clas-
sify games by the Al that would be most effective
at playing it?

3. What is the performance of the created algo-
rithm in the Kilothon competition?

4. Does the created algorithm outperform the win-
ner of the previous Kilothon?

5. Can the performance of the Al be increased by
adding GGP enhancements to the single portfo-
lio agents?

2 Methods

2.1 Clustering

In order to create a relevant subset of the games, clus-
tering techniques are used. Clustering is a technique
of grouping similar data points together into clusters
without prior knowledge of their classifications. Clus-
tering algorithms use various methods like distance
measures to determine the similarity between data
points and create clusters based on that similarity.

2.1.1 Data Preparation

To cluster the games, the correct data from the
Ludii database had to be retrieved. The tables that
were kept from the whole database are the following:
concepts, gamerulesets, games, rulsesetconcept, ruls-
esetconceptuct, rulesetconceptab. By merging those
different tables into a dataframe, a proper dataset
suitable for clustering was created. Preprocessing
was done in order to remove visualisation concepts
as well as those that have identical values to others.
A feature selection algorithm was implemented in
order to reduce the dimensionality of the data.

First, Principal Component Analysis (PCA) [15]
was applied. PCA is a technique for dimensionality
reduction, it is a linear method that transforms the
original data into a new coordinate system where

the first axis represents the direction of maximum
variance, the second axis represents the direction of
second maximum variance and so on. By using PCA,
it is possible to reduce the number of dimensions
in the data while still preserving as much of the
original variation in the data as possible. Using this,
the data went from 669 to 150 features, representing
the concepts of the games. 150 was was selected as
this represented 90% of the variance of the original
data.

Since clustering is unsupervised, feature selection
had to be done by comparing how well a model with-
out a given feature can predict this feature. This
method uses parallel processing to calculate the fea-
ture importance scores for each feature in the data.
After computing the feature importance scores for ev-
ery feature, they are saved. Based on this the best
75 performing features were taken as the data set.
Another dataset was created that contained three
types of concepts: Equipment, Rules.play, Rules.end.
Based on expert opinions, those three concepts are
the most important ones for this kind of problem.
PCA was also applied to this dataset.

With these techniques there are now four datasets for
the clustering.

e All concepts
e All concepts with PCA and Feature Selection
e Three main concepts

e Three main concepts with PCA and Feature Se-
lection

2.1.2 Clustering Techniques

There are various ways to apply clustering, with each
having their own strengths and weaknesses. To select
the best clustering technique on the game concepts,
the following methods are explored: Agglomerative
clustering, K-Means and BIRCH.

Agglomerative Clustering Agglomerative Clus-
tering is a hierarchical clustering algorithm that
starts by treating each point as an individual clus-
ter, then iteratively merges the closest clusters into

larger clusters until all points are in one single cluster
or a stopping criterion is met. The algorithm can be
used to create any number of clusters as it does not
require a predefined value. The results of this tech-
nique will also be used in future clustering methods.
The resulting dendogram is shown in Figure 1.

Visualising the data

! rT

Figure 1: Hierarchical Clustering

From Figure 1, there are 5 clearly identifiable clus-
ters. This number will be used as a benchmark for
the number of clusters to define in the other cluster-
ing techniques presented in this report.

K-Means K-Means [10] is an unsupervised ma-
chine learning algorithm. It aims to partition a set
of points into K (in this case 5) clusters, where each
point belongs to the cluster with the nearest mean.
The algorithm iteratively assigns each point to the
cluster with the closest mean, and then updates the
cluster means based on the newly assigned points,
until the cluster assignments no longer change. K-
Means requires the number of clusters to be decided
beforehand. The results from the Agglomerative clus-
tering are used to determine the number of clusters
for K-Means.

BIRCH BIRCH (Balanced Iterative Reducing and
Clustering using Hierarchies) is a density-based, hi-
erarchical clustering algorithm. It builds a tree-like
data structure called a CF-Tree (Clustering Feature
Tree) to represent the clusters and their sub-clusters.
BIRCH starts by creating a global cluster that con-
tains all the points in the dataset. Then it iteratively
splits the global cluster into smaller clusters by us-
ing a feature, which is a summary of the points in a
cluster.

2.1.3 Subset Creation

One of the main goals of the study is to create a
representative subset of the games, which will be
done using two different techniques.

The first important part of the subset creation is
to know how many games from each clusters will
appear in the subset. In order to decide this, the
following formula was used:

C
X = threshold

Where:

e X is the resulting number of games in the subset
from the given cluster

e (is the size of the cluster

e threshold is decided to be able to control the size
of the subset

Random A random sampling approach was em-
ployed to generate a subset of the data. This was
done by randomly selecting a specific number of
games from each cluster. This can result in a diverse
subset of the data.

Distance Based In the context of K-means clus-
tering, a centroid is a representative point of a cluster,
defined as the mean of all the points in the cluster.

An alternative strategy for generating a subset of the
data is based on the distance of each point within a

cluster from its centroid. Euclidean distance is used
as the measure of distance. The subset is created
using the closest point as well as a single far point.
This approach ensures diversity by including an out-
lier point and good representation by selecting in-
stances that are central to the cluster.

2.1.4 Final Subset

In order to determine the optimal combination of
dataset and clustering technique for generating a rep-
resentative and diverse subset, a series of experiments
were conducted. The results of these experiments are
presented and analyzed in Section 3.1.

2.2 Agent Methods

This section describes the agent that this paper pro-
poses to enter into the Kilothon competition. First
the portfolio agent will be described quite generally in
subsection 2.2.1, then a more detailed explanation of
the selection processes is provided in subsection 2.2.2.
Finally, this section will describe two techniques that
were used to make the agent more effective at general
game playing in subsection 2.3.

2.2.1 Portfolio Agent

The agent that this paper proposes for general game
playing is a portfolio agent. This portfolio agent con-
tains a portfolio of other well-established game play-
ing agents. Whenever asked to play a game, the port-
folio agent needs to select from the portfolio how to
play the game. The difficulty here is that a general
game playing agent needs to be able to play games
it has not seen before. There are various approaches
that can be taken to decide on an agent. Two such
approaches are described in subsection 2.2.2. The
portfolio of this proposed agent contains five game
playing agents: Alpha-Beta Search, PN-MCTS [7],
UCT [9], MAST [2] and GRAVE [6].

All these agents are already implemented in Ludii
and have different strengths and weaknesses. Alpha-
Beta can use heuristics which can vary results. These
are explored in Section 2.3.1. UCT is the opponent
agent, and can thus be seen as a kind of ’safe’ option,

as playing an agent against itself typically results in
a win rate around 50%. PN-MCTS is an agent that
combines UCT with Proof-Number Search[7]. It was
shown to be able to overcome some weaknesses of
UCT in certain domains. A portfolio agent specifi-
cally tries to find agents that can take over when oth-
ers are weak, so PN-MCTS could serve as a solution
in some domains. Finally, MAST and GRAVE are
both enhanced UCT agents as well. These enhance-
ments could give an edge over the original UCT agent
opponent that they are built on.

2.2.2 Agent Prediction

There are two strategies for agent selections that are
implemented in this project. They are described in
the following sections.

Clustering based The initial strategy for select-
ing the optimal Al for a given game is based on the
clustering analysis conducted in Section 2.1. Given a
game, the agent will classify it into one of the iden-
tified clusters and subsequently utilize the AT model
that performed best on that cluster. This approach
aims to ensure that the selected Al model is most
suitable for the game’s characteristics.

Machine Learning The second approach for se-
lecting the appropriate Al for a given game uses a su-
pervised machine learning model. Experiments were
done on the subset in order to get an indication of
which agent is best for each game. A Random For-
est Classifier [3] was then trained on the subset to
predict Als based on game concepts. This was then
applied to all games to get a prediction for the best
Al

2.3 GGP Features

Extra GGP features can be developed to potentially
increase the utilities of the portfolio agent on the
Kilothon. In this paper, automatic heuristics and
new ways of distributing thinking time are explored.

2.3.1 Automatic Heuristics

Algorithms like Alpha-Beta rely heavily on their eval-
uation function. An Al for game playing is often only
applied to one or one type of game. In these cases,
an evaluation function can be handcrafted based on
expert knowledge and time can be spent on tuning
this. In General Game Playing, these options are not
available, and thus generic evaluation functions need
to be generated. This is the field of hyper-heuristics,
where heuristics are generated, selected or combined
to fit a subproblem [8].

Whether to select, generate or combine heuristics
for a problem depends on the type of game and how
much time there is for learning.

One way to approach hyper heuristics is generating
an evaluation function based on meta-information of
the game. When there is quite some time to play the
game, multiple generated evaluation functions can be
tested against one another and the best evaluation
function can then be picked. Onme issue is that this
testing needs time, and in the Kilothon competition
an agent only has one minute per game.

Offline learning for generalized heuristic functions
is therefore the go-to approach regarding the Kilo-
thon. Stephenson et al. [13] used this type of learn-
ing to create a machine learning model to predict
the best single heuristic per game. This was trained
by running experiments on all games with evalua-
tion functions consisting of one heuristic each time.
This research only includes one heuristic per eval-
uation function, as otherwise the weights between
these heuristics also has to be determined. Note that
heuristics are split up by whether they are negative
or positive, e.g. MaterialNeg and MaterialPos.

To continue from the research by Stephenson et
al. these best single heuristics per game can be ex-
tracted, after which multiple evaluation functions can
be tested by combining these n-best heuristics and
the weights between them. It was chosen to do this
training grouped by the endgame concept of a game
as these show high correlation.

2.3.2 Time Distribution

Under the rules of the Kilothon each agent is allowed
one minute of thinking time per game. It can dis-
tribute this over all the turns in any way. The op-
ponent uses 0.5 seconds per move and then switches
to random when time is run out. Some strategies
were developed in order to measure the change per-
formance. The DurationTurn concept in Ludii rep-
resents the average number of turns in a game for a
specific agent. Since in the Kilothon the agent plays
against UCT, this was the length of the game that
was selected. Three strategies were developed for the
agent to distribute its time.

The first strategy was a simple uniform time dis-
tribution. The time was calculated by dividing the
minute by the length of the game. This time inter-
val was then set as the maximum thinking time per
move.

Another strategy would be to start with a lower
thinking time and then increase it as the games go
on. This could improve the model as it may result
in the opponent running out of time and the agent
would then have a lot of thinking time and be able
to take advantage of the random player. For this a
linear increase with a starting time of 0.1 seconds was
selected. The rate of increase was then calculated so
that a total thinking time of one minute would be
reached when a game ends.

The final strategy was a linearly decreasing think-
ing time model. This means that an agent could use
more thinking time in the beginning of the game and
get an advantage. The initial starting time and rate
of decrease are calculated so that at the expected end
of the game the agent thinks for 0.1 seconds and has
used its entire minute of thinking time.

3 Experiments

In this section, the experiments done to create and
train the models are discussed as well as getting the
final results of the portfolio agent.

3.1 Subset Validation

The main goal of the subset is to be able to run agents
and get results that would give an indication as to
how the agent would perform in the Kilothon. To
validate which of the created subsets were best ex-
periments were run with different pre-existing agents
on the Kilothon. For each agent the score on the Kilo-
thon and each of the subsets created was calculated.
From this the correlation of each subset scores to the
actual scores was calculated. To do this Pearson’s
correlation coefficient [1] was used. It is calculated
using the following formula.

Covariance(x,y)

Correlation(x,y) = e

This gives a value between -1 and 1. Correlations
of -1 and 1 indicate perfect negative and positive cor-
relation and 0 indicates no correlation.

If an agent were to win all games in the Kilothon
then it would also win every game in the subsets.
Similarly, if it was to lose all games. These values
were also added into the scores of subsets in order
to enforce a positive correlation. The subset with the
highest positive correlation was then chosen to be the
final result.

These experiments were done on different AI’s in
order to ensure that the subset was valid for agents
with different strengths.

3.2 Subset Explainability

To see if there is are ways to explain why games are
clustered in a certain way the main concepts for each
cluster were calculated. Since each cluster is defined
by its center point the distances between each concept
per cluster can be calculated. A concepts importance
in a cluster was defined as the average distance to
this concept in the other clusters. This method will
be able to identify outliers as the concepts of each
centroid.

3.3 Heuristics

The heuristic that works best in each situation is
dependent on the ending condition of the game,

which is why defining heuristics per ending condi-
tion is an intuitive approach. Therefore, for auto-
matic heuristic generation, all games were grouped
by their EndGameConcept, this is a group of con-
cepts in Ludii that describes the ending condi-
tion of a game. An example EndGameConcept is
EliminatePiecesWin and EliminatePiecesLoss. Per
EndGameConcept the average best single heuristics
are selected based on the research by Stephenson et
al., as described in Section 2.3.1. The best two heuris-
tic terms are selected and four variations are created:
equal weights for both (1 and 1 respectively), first
bigger weight (100 and 1), second bigger weights (1
and 0.001) and only the first weight (1 and 0). These
four heuristics plus the basic heuristic are then run
10 times per game per EndGameConcept using an
Alpha-Beta depth 2 agent against the basic heuristic
(also Alpha-Beta depth 2). The best heuristic is then
selected based on the mean utility. These new heuris-
tics are added to the portfolio agent, where when
Alpha-Beta is chosen as the agent, the EndGameCon-
cept of a game are checked whether non-basic heuris-
tic can be applied.

3.4 Time Distribution

To test which of the time distribution algorithms is
best, each of them were tested on the subset using the
portfolio agent that uses the classification model for
agent prediction. These scores were then compared
and the highest performing strategy was taken as the
best.

4 Results

4.1 Subset Validation

To decide which subset will be used, the correlation
between Kilothon scores and cluster scores was cal-
culated. The results of all the experiments on subsets
can be found in Appendix ?7?. Best performing sub-
set was K Means on filtered PCA data with distance
selection and is displayed in Table 1.

The correlation of these columns is 0.999. This is
clear as many of the scores are similar over all the dif-

K Means on filtered
PCA data with
distance selection

Full Kilothon

Alpha Bets | 0.237 0.275
ucT 0.041 0.106
PN-MCTS | -0.093 -0.088
GRAVE 0.012 -0.04
MAST 0.111 0.110

Table 1: Performance of Different Agents on Kilothon
and Subset

ferent agents. Due to time restraints of the project
each of these agents were only run once, which can
cause a lot of variance in the data. This means the re-
sults can vary with runs and in order to get more sta-
ble results more experimentation would be required.

4.2 Subset Explainability

The three most important features for each cluster
were found by calculating the average distance be-
tween each concept of the centroids. The following
list displays these results.

e Cluster 0

— Dice_AB
— Num Dice_AB
— Roll Frequency UCT

e Cluster 1

— Threat_AB
— Forward Direction_AB
— Can Not Move

e Cluster 2

— Step Decision To Empty Frequency
— Step Decision Frequency

— Step Decision To Empty Frequency UCT
e Cluster 3

— Sow Origin First_AB

— Sow Frequency UCT

— Sow Frequency
e Cluster 4

— Add Decision Frequency
— Add Decision Frequency UCT
— Add Decision Frequency_AB

It is clear that these clusters are able to separate
types of games based on the concepts. Cluster 0 is
basing it on die indicating that it contains stochas-
tic games. Looking into this cluster it contains game
like Backgammon. Cluster 1 has concepts that ap-
ply to chess variants and contains many variants of
Chess and Shogi. In Cluster 2 it is clear that games
with a step decision are involved. This means it con-
tains games where each step is a move, for example
Tower of Hanoi. Contrary to this Cluster 4 uses Add
Decision Frequency indicating that it contains game
where you add pieces to the board. This can be for
example Go and Ultimate Tic-Tac-Toe. Cluster 3
has Sow concepts indicating the games are Manacala
game like Kalah.

4.3 Al tests

To identify the best model for predicting the agent for
each game, the portfolio agent strategies were played
on the Kilothon. The cluster model used a single Al
per cluster that was trained on the subset. A random
forest classification model was also built and trained
on the subset in order to predict which AI is best
for each game based on its concepts. The results are
displayed in Table 2

Cluster Model
0.1243

Classification Model
0.1614

’ Score

Table 2: Performance of Portfolio Agents on the Kilo-
thon

This shows that the classification model outper-
forms the clustering model on the Kilothon. This
is likely due the model aiming to find concepts that

are similar within games that have the same Al pre-
dictions. This is different as clustering finds simi-
lar games by concepts however has no indication of
whether this means that the same strategies apply
and same agents will perform similarly. They both
however give a relatively good score.

4.4 Heuristics

Examples of new heuristics per EndGameConcept
can be seen in Table ??. This shows three end con-
cepts where new heuristics are chosen if these apply
to a game. In the NoMovesLoss concept, for example,
the new heuristics give a negative weight to the mate-
rial instead of the basic heuristics positive one. These
three example trained heuristics all gave a higher util-
ity than the basic heuristic, and were therefore im-
plemented in the portfolio agent. One limitation of
this research is that there was not enough time to do
many experiments. An example of this is that prefer-
ably more experiments were run on all endgamecon-
cepts so that the results are more stable. If more
time was available, it would be possible to run more
experiments and then based on this, train a machine
learning model (e.g. RandomForest) on the output of
the best weights between the heuristics. This would
likely give better results on the final Kilothon score.

Table 4 displays the utility on the Kilothon before
and after the automatic heuristics is added. It is
observed that the utility increases after adding the
extra heuristic features. The model predicts for 180
games that Alpha-Beta should be used.

No Heuristics | Heuristics
Score overall 0.1614 0.1864
Winrate only AB | 0.67 0.77

Table 4: Performance of the Portfolio Agent with and
without Heuristic Prediction on Kilothon

4.5 Time Distribution

The three time distribution strategies were all tested
on the subset in order to get an indication of which
would be best to apply to the final agent. The results
of this are displayed in Table 5.

Table 3: Example End Concepts and their best heuristics and the best weights between those heuristics.

Heuristic 1 Heuristic 2 Weights
LineWin RegionProximity5 LineCompletionHeuristic | Equal
NoMovesLoss | UnthreatenedMaterialNeg | MaterialNeg FirstHigher
NoOwnPieces | MobilitySimpleNeg InfluenceNeg Equal
0.5 Uniform | Increasing | Decreasing a representative subset is found, which is proved to
[Score | 0.1614 | 0.1823 0.1725 0.1792 have relatively similar results as the Kilothon. The

Table 5: Performance of the Portfolio Agent with Dif-
ferent Time Strategies on Kilothon Subset

This shows that overall a uniform time distribu-
tion was the best. This was the strategy that the
final agent used on every game. It is however likely
that the performance of these strategies highly differs
between games. Future work could be done in order
to build a model that would be able to predict the
strategy based on the game. Unfortunately due to
time constraints of this project it was not feasible.

4.6 Final Agent

The final agent was comprised of the ML portfolio
agent and used a uniform time distribution and au-
tomatic heuristic prediction. On the full run of the
Kilothon it scored 0.2195. In comparison when run-
ning Cyprien Michel-Deletie’s agent a score of 0.189.

5 Conclusion

In this study, a portfolio agent was developed to
achieve a high accuracy in general game playing. To
achieve this, clustering was applied on all game con-
cepts to create a representative subset of them. This
was used to answer the question: Can games be clus-
tered based on their concepts in a way that a valid
subset can be created of the games in the Kilothon,
and is an agents performance on this subset repre-
sentative of how it would perform on the entire Kilo-
thon? Results show that clustering can be applied af-
ter using PCA and Feature Selection, showing logical
splits in the data. When using non-random sampling,

final agent had a utility of as 0.1944 on the subset
and 0.2195 on the Kilothon.

This subset was used for experiments to train a ma-
chine learning method to answer the question: Can
an effective algorithm be developed to classify games
by the AI that would be most effective at playing it,
and what is the performance of the created algorithm
in the Kilothon competetion? A RandomForestRe-
gressor was used to create this model, and proved
to work well as score of the agent on the Kilothon
achieved a utility of 0.161.

To increase the utility of the agent, time distribu-
tion methods and automatic heuristics were explored
to answer whether the performance of the agent can
be increased by adding general game playing en-
hancements. Both the time distribution and auto-
matic heuristics show evidence of increasing the score
drastically, increasing the utility to 0.2195. This
score outperforms the winner of the Kilothon in 2022
as this agent scored 0.189.

The portfolio agent created in this study and its
high performance is a step towards development
of general artificial intelligence, where one portfolio
agent has to pick the right Al for the right task.

References

[1] Jacob Benesty, Jingdong Chen, Yiteng Huang,
and Israel Cohen. Pearson correlation coeffi-
cient. In Noise reduction in speech processing,
pages 1-4. Springer, 2009.

[2] Y. Bjornsson and H. Finnsson. CadiaPlayer: A
simulation-based General Game Player. IFEE
Transactions on Computational Intelligence and
Al in Games, 1(1):4-15, 2009.

[3] Leo Breiman. Random forests. Machine learn-
ing, 45(1):5-32, 2001.

[4] Browne C. The digital ludeme project. Board
Game Studies Colloquium (BGS 2018), April
2018.

[5] Michel-Deletie C. Heuristics-based ais for gen-
eral game playing. 2022.

[6] Tristan Cazenave. Generalized rapid action
value estimation. 01 2015.

[7] E. Doe, M. H. M. Winands, D. J. N. J. Soe-
mers, and C. Browne. Combining monte-carlo
tree search with proof-number search. In 2022
IEEFE Conference on Games (CoG), pages 206
212, 2022.

[8] John H. Drake, Ahmed Kheiri, Ender Ozcan,
and Edmund K. Burke. Recent advances in selec-
tion hyper-heuristics. Furopean Journal of Op-
erational Research, 285(2):405-428, 2020.

[9] Levente Kocsis and Csaba Szepesvdri. Ban-
dit based monte-carlo planning. In Jo-
hannes Fiirnkranz, Tobias Scheffer, and Myra
Spiliopoulou, editors, Machine Learning: ECML
2006, pages 282-293, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[10] J MacQueen. Classification and analysis of mul-
tivariate observations. In 5th Berkeley Symp.
Math. Statist. Probability, pages 281-297, 1967.

[11] E. Piette, D. J. N. J. Soemers, M. Stephenson,
C. F. Sironi, M. H. M. Winands, and C. Browne.
Ludii - the ludemic general game system, 2019.

[12] GitHub Digital Ludeme Project. Ludii ai com-
petition, 2022.

[13] M. Stephenson, D. J. N. J. Soemers, E. Piette,
and C. Browne. General game heuristic predic-
tion based on ludeme descriptions. In 2021 IEEE
Conference on Games (CoG), pages 1-4, 2021.

[14] M. Stephenson, D. J. N. J. Soemers, E. Piette,
and C. Browne. Ludii language reference. Dec
2020.

10

[15] Svante Wold, Kim Esbensen, and Paul Geladi.

Principal component analysis. Chemometrics
and intelligent laboratory systems, 2(1-3):37-52,
1987.

A Subset Validations

K Mean Birch
No PCA PCA No PCA PCA
distance random distance random distance distance
Full Kilothon | filtered | not filtered | filtered | not filtered | filtered | not filtered | filtered | not filtered | filtered | not filtered | filtered | not filtered

Alpha Beta | 0.237 0.148 |0.019 0.302 |0.338 0275 |0.214 0.308 |0.306 0.416 |0.092 0.205 |0.110
UCT 0.041 0.055 |0.033 0.110 |0.113 0.106 |-0.038 0.099 |0.158 0.183 |-0.051 0.163 |-0.027
PNMCTS |-0.093 -0.120 |-0.078 -0.033 [0.034 -0.088 |-0.012 -0.275 |-0.221 -0.122 [-0.095 -0.213 |-0.274
GRAVE 0.012 -0.076 |0.234 -0.021 [-0.094 -0.040 |-0.214 0.097 |-0.003 0.247 |[-0.019 0.085 |0.155
MAST 0.111 -0.004 | 0.201 0.116 |0.207 0.110 |0.107 0.178 |0.046 0.164 |0.023 0.058 |0.119
Correlation 0.996 |0.975 0.998 |0.991 0.999 |0.987 0.988 |0.992 0.986 |0.995 0.991 |0.984

B Subset

e Cluster 0

— Los Escaques

— Tayam Sonalu
— Petol
— Siga (Sri Lanka)
— Pahada Keliya

— Nebakuthana

— Los Palos

— Tawula
— Kawade Kelia

— Asi

Keliya

— Verquere
— Pachih

e Cluster 1

— Saxun
— Breakthrough Chess
— Rumi Shatranj

Figure 2: Subset Validation Results

Lombard Chess
Ouk Chatrang

Persian Chess with a Queen

Cittabhramanrpasya Khelanam

Welschschach

Safe Passage
Chaturanga (12x12)
Sarvatobhadra
Shodra

Ploy

Taikyoku Shogi

Currierspiel

e Cluster 2

11

Tuknanavuhpi

Bam Blang Beh Khla

Coyote

Janes Soppi (Symmetrical)

Tides

Mysore Tiger Game
Musinaykahwhanmetowaywin
Hund efter Hare (Vendsyssel)
Merimueng-rimueng-do
Pulijudamu

N Puzzles

Demala Diviyan Keliya
Haretavl

Juroku Musashi
Thermenmuseum

Mysore Tiger (Two Tigers)
La Yagua

Huli-Mane Ata

Janes Soppi

Mao Naga Tiger Game
Yeung Luk Sz’ Kon Tseung Kwan
Orissa Tiger (One Tiger)
Merimueng-rimueng

T’uk T uk

Shui Yen Ho-Shang
Komikan

Jeu de Renard (Two Foxes)
Ram Tir

Hyvn aetter Hare

Dam (Singapore)

Orissa Tiger (Four Tigers)
Bouge Shodra

Yaguarete Kora

Adugo

Shiva

Refskak

Bagh Guti

Gurvan Xudag

Wolf und Schaaf

Mysore Tiger (Three Tigers)

e Cluster 3

Hufesay

Andada

Tchela

Kanji Guti
Dabuda

Koro

Gamacha

Gabata (Ansaba)
Gabata (Ghinda)
Katro

Gabata (Wugqro)
Awagagae
Gabata (Oromo)
Motiq

French Wari
Four-Player Chess
Gabata (Adegrat)

e Cluster 4

12

Shisen-Sho
Hamiltonian Maze
Latin Square
Tic-Tac-Mo

Quantum Leap

